What is exosome?

what are exosomes images

 

 

Exosomes are small, membrane-bound vesicles that are secreted by various cell types, including cells in the immune system, stem cells, and cancer cells. They play a crucial role in cell-to-cell communication by carrying and transferring molecules such as proteins, nucleic acids (like RNA and DNA), and lipids between cells.

Exosomes have gained significant attention in recent years for their potential applications in various fields, including regenerative medicine, drug delivery, and diagnostics. They have been studied for their ability to influence processes such as immune response, tissue repair, and tumor progression.

Exosomes have also shown promise in the development of therapeutic interventions for a range of diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. Their small size, stability, and ability to cross biological barriers make them an attractive tool for medical research and potential clinical applications.

Exosomes are a type of extracellular vesicle, which are small, membrane-bound structures released by cells into their surrounding environment. They were first discovered in the 1980s and were initially thought to be a way for cells to discard waste materials. However, further research has revealed that exosomes play a crucial role in intercellular communication.

Here are some key details about exosomes:

  1. Biogenesis: Exosomes are formed within the endosomal pathway of cells. This involves a series of processes where a small portion of the cell membrane invaginates to form early endosomes. These endosomes then mature into multivesicular bodies (MVBs), which contain small vesicles inside. When these MVBs fuse with the cell membrane, they release the vesicles into the extracellular space, which are then called exosomes.

  2. Size and Composition: Exosomes are typically very small, with a diameter ranging from about 30 to 150 nanometers. They contain a mixture of biomolecules, including proteins, lipids, nucleic acids (such as RNA and DNA), and various metabolites.

  3. Role in Intercellular Communication: Exosomes serve as carriers for bioactive molecules, allowing cells to communicate with each other over short and long distances. They can transfer functional cargo (like proteins and genetic material) from one cell to another, influencing recipient cell behavior.

  4. Diverse Cellular Origin: Virtually all cell types studied to date have been found to release exosomes, including immune cells, stem cells, neurons, cancer cells, and many others. Each type of cell may produce exosomes with distinct cargo, reflecting their cell of origin and physiological state.

  5. Physiological Functions: Exosomes have been implicated in various physiological processes, including immune response regulation, tissue repair and regeneration, neuronal communication, and blood clotting.

  6. Pathological Implications: Dysregulation of exosome release and content has been associated with a range of diseases, including cancer, neurodegenerative disorders (like Alzheimer’s and Parkinson’s), cardiovascular diseases, and infectious diseases.

  7. Potential Applications: Due to their unique properties, exosomes are being investigated for a wide range of potential applications, including as diagnostic markers, drug delivery vehicles, and therapeutic agents in regenerative medicine and cancer treatment.

  8. Challenges in Research: Despite their potential, there are challenges in isolating and characterizing exosomes, as well as understanding their precise roles in different biological contexts. Researchers are actively working to address these challenges.

Overall, exosomes represent an exciting area of research with significant potential for impacting various fields of medicine and biology.

What is exosome? Read More »

유전자에 대한 궁금증

DNA란 무엇입니까?

우리 몸은 수조개의 세포로 만들어져 있습니다. 그 각 세포 안에는 염색체가 있습니다. 인간에게는 23 쌍의 염색체가 있습니다. 각 쌍의 한 염색체는 엄마의 난자에서 나오고 다른 염색체는 아빠의 정자에서 유래합니다. 각 염색체는 디옥시리보 핵산 (DNA)으로 구성됩니다. 간단한 비유는 사람의 DNA가 우리가 누구인지에 대한 모든 정보의 청사진 역할을 한다는 것입니다. DNA 자체는 유전자라고 불리는 특정 부분으로 조직되어 우리 몸이 성장하고 기능하는데 필요한 단백질을 암호화합니다. 유전자 내 특정 코딩은 A, T, G 및 C의 네 가지 특정 DNA 염기만을 사용하여 구성됩니다.

유전자분석 또는 유전체분석이 무엇입니까?

유전체 분석은 혈액, 타액 또는 조직에서 분리한 세포로부터 DNA를 추출하여, 타고난 유전적 특성과, 특정 질병 발생과 관련된 유전자를 분석하는 검사입니다. 신진대사, 음식물에 대한 반응 및 민감도, 운동 효과, 질병 발생 위험 예측, 약물 반응 속도 및 민감도, 유전질환 보인자 여부, 타고난 개인 성향 및 특성 등 유전자 회사별로 다양한 검사 항목을 통해 개인별 맞춤형 건강 관리를 할 수 있는 최첨단 과학기술을 기반으로 한 헬스케어 프로그램 입니다. 병원에서 진행해야 하는 검사가 있고, 집에서 스스로 검사할 수 있는 DTC 유형이 있습니다.

위험 유전자가 모든 질병의 원인인가요?

아닙니다. DNA의 일부 변화는 질병을 일으키지 않는 정상적인 변이입니다. 이러한 유형의 변화를 양성 변이 (benign variants)라고 합니다. 또는 DNA의 일부 변화로 인해 손상된 유전자나 결함있는 유전자가 생기면 DNA에 의해 정상적으로 코드화되는 단백질의 기능이 손상될 수 있습니다. 이러한 변화를 후성유전학에 따라 해로운 돌연변이 또는 병원성 돌연변이라고 합니다.

전체 유전체 분석를 했어도, 건강 검진처럼 주기적으로 검사를 해야 하나요?

아니요. 유전자는 평생 동안 변하는 것이 아니기에 Whole Genome Analysis Test를 했다면, 다시 할 필요는 없습니다. 평생 단 한번이면 됩니다. 하지만 그 유전자들을 가지고 질병이나 특성을 분석하는 연구는 계속 나오므로 그것을 분석하는 결과는 과학 발전에 따라 달라질 수 있습니다. 새로운 연구 결과가 있다면 새로운 예측을 얻을 수 있음을 말합니다.

암은 어떻게 발달되는 것일까요?

암은 개인의 생애 동안 단일 세포에서 손상된 DNA 변화 (돌연변이)의 축적으로 인해 발생합니다. 이러한 변화의 대부분은 우리 몸이 시간이 지남에 따라 진행되는 자연적 노화 과정 (신체적 변화)의 일부로 발생하는 반면 일부의 경우에는 모든 세포에 돌연변이가 생겨 생식성 변이라고 불리는 경우가 있습니다. 그것들이 암 발병에 “선두”역할을 합니다.

유전성 암이란?

암에는 세 가지 범주가 있습니다 : (1) 산발적, (2) 가족 / 다요인, (3) 유전

(1) 산발적 암은 일반적으로 환경 요인과 자연 노화 과정의 결합으로 인한 것으로 생각된다.

(2) 가족성 / 다인성 암은 일반적으로 단일 유전자 돌연변이에 기인 할 수 없는 암의 병력을 말합니다. 이러한 가족에서의 암 발병은 여러 가지 저위험 또는 중등도 위험 암 유전자의 변이와 환경 요인의 복합 때문인 것으로 보입니다.

(3) 유전성 암이란 특정 암에 걸릴 위험을 현저하게 증가시키는 단일 유전자 돌연변이로 인한 암을 의미합니다. 개인은 이러한 단일 유전자 돌연변이를 가지고 태어났으며, 대부분의 경우 그들은 여러 세대 동안 가족 구성원으로부터 계승되어 왔습니다.

유전성 암 검사는 제가 암에 걸렸는지 말해주는 것인가요?

아닙니다. 이러한 유형의 검사는 암을 진단 할 수 없습니다.  그러나 이 검사는 특정 유형의 암을 발전시킬 위험에 대한 중요한 정보를 제공할 수 있습니다. 이 정보는 암 예방에 있어 스스로 노력하는데 유용할 수 있습니다.

암 유전자 검사에서 높은 위험과 낮은 위험 결과는 무엇을 의미하나요?

양성 결과는 개인의 개인 및/또는 가족의 암 병력을 설명할 가능성이 매우 높은 돌연변이라고 불리는 유전자의 변화가 발견되었음을 의미합니다. 일부 유전자에는 돌연변이가 있는 것으로 밝혀진 환자에 대해 따라야 할 특정 관리 지침이 이미 확립되어 있습니다. 지침에는 감시 강화, 위험을 줄이는 수술 옵션 및/또는 약물이 포함될 수 있습니다. 다른 유전자의 경우 의사의 도움을 받아 전문적인 추적 계획을 세우기 위해 다른 요인과 함께 가족력을 고려해야 합니다. 음성 테스트 결과는 테스트한 유전자에서 돌연변이나 변이가 검출되지 않았음을 의미합니다. 이런 일이 발생하는 데에는 여러 가지 이유가 있습니다. 환자는 이전에 가족에게서 발견된 알려진 돌연변이를 물려받지 않았습니다. 이 사람은 일반 인구와 유사한 암 위험을 갖게 됩니다.

특정 유전자가 특정 질환을 일으키나요?

인간은 모두 약 3만여개의 유전자가 있습니다. 유전자는 한 단백질을 조절하는 기본단위로 말하며 종류에 따라 수 천개, 수 만개의 염기체로 구성 되어 있습니다. 많은 연구에 따르면 특정 질환관 관련된 유전자를 분류합니다. 회사에 따라, 최종적인 대표 유전자를 수십~수백개 내로 선택하여 특정 질병의 위험도 여부를 계산하는 것입니다. BRCA나 APOE 처럼 특정 질환과 매우 상관관계가 높은 유전자도 있습니다. 하지만 실제 치매나 유방암에 영향을 주는 다른 유전자도 많습니다.

유전자 마커(Marker)와 게놈타입(Genotype)은 무엇인가요?

인간의 DNA 안에는 약 32억 개의 염기 서열이 있으며, 이중 약 천 만개의 사람마다 다른 변이된 염기 서열을 가지고있는데 이 차이가 인류의 다양성과 질별 발생의 사람 마다의 차이를 나타나게 합니다. 이 다른 염기 서열 부위를 마커 혹은 SNP (단일염기다항성)라 부르며, 각각 아빠, 엄마로 부터 넘어온 상동염색체의 조합에 따라 세 그룹의 조합, 즉 게놈 타입이 생깁니다. 예를 들어, 원래는 부모 모두가 A인 군이 정상적인 유전조합인 경우, 한쪽 부모로부터 변이된 유전자(B)를 받은 경우, 두 부모 모두 변이된 경우에 따라 각각 AA, AB, BB 세 그룹의 게놈 타입이 결정 됩니다. 각 그룹에 따라 특별 질병의 발생률은 찾을 수 있습니다.

유전적 질환 보인자란 무엇인가요? 이게 나와 자녀에게 어떻게 영향을 미치는 건가요?

어떤 유전 질환은 열성질환일 수 있습니다. 즉, 부모 모두에게서 변이된 유전자(BB)를 받아야 질병이 발생하는 경우 입니다. 한쪽에선 정상 유전자, 한쪽에선 변이된 유전자를 받은 경우 (AB)에서는 질병이 발생 하지 않고, 건강할 수 있는데 이를 보유자(Carrier)라고 부릅니다. 만약 특정 질병을 일으키는 유전자를 가지고 있는 건강한 보유자가(AB X AB) 각각 만나 자녀를 낳으면 확률상 25%에서 유전 질환 (BB) 각각 만나 자녀를 낳으면 확률상 25%에서 유전질환(BB) 를 가지게 됩니다. 이러한 특정 희귀 질환의 보유 여부를 보는 것이 임신 전 검사의 목적 입니다.

검사를 했더니, 특정 질환의 발병 위험도가 높다 합니다. 실제 그 질환이 내게 일어날 확률은 얼마나 될까요?

유전적인 소인은 질병에 따라 조금씩 차이가 있습니다. 같은 암이어도 유전적인 소인이 더 큰 질환이 있고, 환경적인 요인이 더 중요한 질환도 있습니다. 그러므로 유전적인 소인만으로 질병을 모두 설명할 수는 없습니다. 그러나 다른 환경인자가 같다면 분명 유전적인 소인이 높은 경우 질병에 더 걸릴 확률은 높다고 할 수 있습니다.이것을 어떻게 활용하는 가는 개인의 선택에 달려 있습니다. 마치 일기예보가 내일 비 올 확률을 얼마라고 이야기 해줄 때, 개인마다 심각성과 중요성을 달리 느낄 수 있고 다르게 대처하는 것과 마찬가지 입니다. 일반적으로 특정 질환의 유전적 소인이 높을 때는 적극적으로 관련 검진을 더 자주 하고, 질병을 일으킬 수 있는 환경적 위험 인자를 최소화할 노력이 필요가 있습니다.

멀티 유전자 SNP를 통해 영향력에 비중값을 주고 알고리즘으로 계산하여 위험도를 ODD ratio 기준으로 나타냅니다. 같은 질환이더라도 회사에 따라 bio-informatics의 기술력(알고리즘)에 따라 다르기 때문에 결과가 달라질 수 있습니다. ODD ratio 값은 1에서 시작이 됩니다. 누구나 risk에 노출되어 있기 때문입니다. 확률은 이 값을 기준으로 전체 평균을 내고 그 기준으로 위험도가 얼만큼 높은 지를 배수로 나타내기도 합니다

유전자에 대한 궁금증 Read More »

你体内的免疫力在哪里呢

在换季期因气温变化容易得感冒,

因可吸入物质等环境污染患上呼吸道疾病,

身体发出各种异常信号,

这一切都是因为你的免疫力降低了 。

免疫力降低会成为万病之源。

什么是免疫力?

免疫力是一个防御系统,就像是军队,攻击又攻击,每天都会在我们体内出现的还有病原菌,大肠杆菌,病毒,可吸入细微颗粒物以及非常多的癌症细胞等。

这个防御系统一旦受损,就会产生各种各样的疾病。

那么你们体内的免疫力在哪里呢?

免疫细胞会活动的像一个军队

起到免疫军角色的白血球会起到防御作用以此强化免疫细胞让你的身体变得更加结实。

那么怎样才能让免疫力增强呢?

这是大家都应该知道的基础知识。
虽然可以在日常生活中做到但是没有比这个更难做到的了。
如果可以一下子就让免疫力变好该有多好呢。

你体内的免疫力在哪里呢 Read More »

질병의 싹, 미병이란?

아직 아픈 것은 아니지만, 이대로 방치해 두면 병이 납니다.
이러한 "질병 위험" 높은 상태를 '미병'이라고합니다.
미병의 단계에서 뭔가 대책을 강구되면, 질병을 미연에 방지할 수 있기 때문에 병에 걸리지 않을 확률이 훨씬 높아집니다.

몸속에 잠재하는 질병의 "싹"

질병은 어느 날 갑자기 발병하는 것은 아닙니다. 흙에 뿌린 씨앗이 싹트고 꽃을 피우듯, 서서히 성장해 나가는 것입니다. 많은 사람들은 아프거나 건강검진에서 이상이 발견된 것을 계기로 그때야 병원에 향합니다. 그러나, 그 시점에서는 이미 병이 진행되고 있는 경우가 대부분이고, 더 빨리 진찰을 해둘 걸 하고 후회하기 일수입니다.
동양 의학에서 말하는 ‘미병’은 말 그대로 “아직 아픈 것은 아니다”라고 풀이할 수는 있지만, “질병을 향해 가고 있다”라고 볼 수 있습니다. “질병에 걸릴 위험성이 높아지고 있다”는 상태라고 생각하면 좋을 것입니다. 땅에 뿌려진 씨앗에서 싹이 텄지만 아직 어떤 꽃이 피는 모르는 단계 – 확실한 것은, 이대로 시간이 지나면 확실히 “병”이라는 꽃이 만개한다는 것입니다.
“나는 매년 건강 검진을 받고 있기 때문에 괜찮아요.” 라고하는 사람도 있을지 모릅니다. 그러나 현대 의학에서는 검사 결과에서는 “질병 또는 건강?”라는 흑백논리로 판정됩니다. 그래서 회색 지대(그레이존)에 있는 미병은 전혀 눈길이 가지 않는 것입니다. 그래서 한없이 검은색에 가까운 회색도, 건강 검진에서 ‘이상 없음’으로 판정되고 마는 것입니다. 그레이는 머지않아 검은색이 됩니다. 건강 검진에서 이상 없음이었는데, 몇 달 후 심각한 질병이 발병했다는 사람이 있는 것은 그런 이유입니다. 미병이라는 개념을 적극적으로 도입하고, 그 시점에서 진행을 막기 위한 대책을 취하면 질병은 더 줄어들 것입니다.

미병의 사인을 놓치지 않아야..

병에 걸리지 않기 위해서는, 미병의 사인을 놓치지 않는 것이 매우 중요합니다. 어딘가에 상태가 좋지 않을 경우 몸은 반드시 사인을 줍니다. 그러나 처음에는 큰 고통을 동반 사인이 아니기 때문에, 무심코 놓치고 마는 것입니다.
예를 들어, 요즘 쉽게 피로해지는 일이 있었다고 합니다. 그만한 일로 병원에 가는 사람은 거의 없을 것입니다. 만약 병원 검사결과로 문제가 발생하지 않는다면, 아마도 아무런 치료도 하지 않을 것입니다. 다시 쉽게 피로해지는 것이 당연해집니다. 감각이 마비되어 버리는 것입니다. 몸은 쉽게 피로하다는 사인을 내고 “어딘가에 이상이 있어”라고 호소하는데도 불구하고 본인은 그것을 내버려둔 셈입니다. 그 때문에, 병의 싹은 점점 커져 버리고, 급기야 심한 고통에 휩싸여 병원으로 달려가는 사태에 이르게 되는 것입니다.
이외에도 컨디션 불량의 사인은 많이 있습니다. 잠이 안오고, 식욕이 없고, 손발이 차갑고, 현기증과 두통, 어깨와 목이 심하게 뻐근하고, 변비와 피부가 거칠어지는 등··· 이러한 사인이 나올 때, 어딘가에 이상이 있을지도 모른다고 생각하고 일상 생활을 체크해 보면 좋을 것입니다. “불규칙한 생활이 계속되고 아닐까?” “과식하거나 과음을 했었던가?” “운동 부족이 아닐까?” … 등등. 그리고 뭔가 부진의 원인으로 짚이는 것이 있다면 생활습관을 고칠 것입니다. 그러한 마음가짐이 질병으로부터 자신을 보호하기 위해 매우 중요한 것입니다.

미병을 뽑는다 "열쇠"는 면역력에

미병을 생각하는데 있어서 유전적인 요소도 매우 중요한 힌트가 됩니다. 예를 들어, 가족력에 당뇨병이 많다면 자신도 같은 위험이 있다고 생각하는 것이 좋을 것입니다. 자각 증상도 없고, 검사에서 혈당이 정상이라도 자신은 그레이존에 있다고 생각하고, 식사 등 일상 생활 습관에 주의할 필요가 있습니다.
암의 경우도 마찬가지입니다. 가족력이 암이 많다면, 식생활이나 스트레스 관리를 소홀히 해서는 안됩니다. 또한, 유전자 검사 등을 적극적으로 활용해 미리 자신의 “암 위험도”를 파악해 두는 것도 중요합니다.
암이 영상 진단 등에서 발견되는 것은 5㎜ 정도의 크기가 되면서부터 입니다. 암 세포가 분열 증식하여 그 정도의 크기가 되기 위해서는 5 년에서 20 년이 걸립니다. 즉, 암은 미병 기간이 매우 긴 질병이며, 그만큼 암을 싹을 잡을 기회도 많이 남아 있다는 것입니다.
미병 중에 암의 싹을 잘라내기 위해 중요한 기능을 하는 것이 “면역력”입니다. 면역력을 높이기 위해서는 다양한 방법이 있습니다만, 우선은 식습관, 수면, 운동, 스트레스 관리 등, 일상 생활을 건강하게 유지하도록 유의해야 합니다.

보다 적극적으로 면역력을 높이기 위해서는
활성화NK면역세포요법을 시행하는 것도 효과적인 방법입니다.

질병의 싹, 미병이란? Read More »

Nobel Prize 2018

Reference: Tasuku Honjo – Facts – 2018. NobelPrize.org. Nobel Media AB 2019. Fri. 27 Sep 2019.
Cancer kills millions of people every year and is one of humanity’s greatest health challenges. By stimulating the inherent ability of our immune system to attack tumor cells Tasuku Honjo and James Allison have established an entirely new principle for cancer therapy. In 1992, Honjo discovered a protein on immune cells and, after careful exploration of its function, eventually revealed that it operates as a brake on the immune system. Therapies based on his discovery proved to be strikingly effective in the fight against cancer.
© Nobel Media AB. Photo: A. Mahmoud
Tasuku Honjo

The Nobel Prize in Physiology or Medicine 2018<

Born: 27 January 1942, Kyoto, Japan

Affiliation at the time of the award: Kyoto University, Kyoto, Japan

Prize motivation: “for their discovery of cancer therapy by inhibition of negative immune regulation.”

Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud
James P. Allison

The Nobel Prize in Physiology or Medicine 2018

Born: 7 August 1948, Alice, TX, USA

Affiliation at the time of the award: University of Texas MD Anderson Cancer Center, Houston, TX, USA, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA

Prize motivation: “for their discovery of cancer therapy by inhibition of negative immune regulation.”

Prize share: 1/2

Press release
2018-10-01
The Nobel Assembly at Karolinska Institutet has today decided to award the 2018 Nobel Prize in Physiology or Medicine jointly to James P. Allison and Tasuku Honjo for their discovery of cancer therapy by inhibition of negative immune regulation
SUMMARY
Cancer kills millions of people every year and is one of humanity’s greatest health challenges. By stimulating the inherent ability of our immune system to attack tumor cells this year’s Nobel Laureates have established an entirely new principle for cancer therapy.
James P. Allison studied a known protein that functions as a brake on the immune system. He realized the potential of releasing the brake and thereby unleashing our immune cells to attack tumors. He then developed this concept into a brand new approach for treating patients.
In parallel, Tasuku Honjo discovered a protein on immune cells and, after careful exploration of its function, eventually revealed that it also operates as a brake, but with a different mechanism of action. Therapies based on his discovery proved to be strikingly effective in the fight against cancer.
Allison and Honjo showed how different strategies for inhibiting the brakes on the immune system can be used in the treatment of cancer. The seminal discoveries by the two Laureates constitute a landmark in our fight against cancer.

Can our immune defense be engaged for cancer treatment?

Cancer comprises many different diseases, all characterized by uncontrolled proliferation of abnormal cells with capacity for spread to healthy organs and tissues. A number of therapeutic approaches are available for cancer treatment, including surgery, radiation, and other strategies, some of which have been awarded previous Nobel Prizes. These include methods for hormone treatment for prostate cancer (Huggins, 1966), chemotherapy (Elion and Hitchings, 1988), and bone marrow transplantation for leukemia (Thomas 1990). However, advanced cancer remains immensely difficult to treat, and novel therapeutic strategies are desperately needed.
In the late 19th century and beginning of the 20th century the concept emerged that activation of the immune system might be a strategy for attacking tumor cells. Attempts were made to infect patients with bacteria to activate the defense. These efforts only had modest effects, but a variant of this strategy is used today in the treatment of bladder cancer. It was realized that more knowledge was needed. Many scientists engaged in intense basic research and uncovered fundamental mechanisms regulating immunity and also showed how the immune system can recognize cancer cells. Despite remarkable scientific progress, attempts to develop generalizable new strategies against cancer proved difficult.

Accelerators and brakes in our immune system

The fundamental property of our immune system is the ability to discriminate “self” from “non-self” so that invading bacteria, viruses and other dangers can be attacked and eliminated. T cells, a type of white blood cell, are key players in this defense. T cells were shown to have receptors that bind to structures recognized as non-self and such interactions trigger the immune system to engage in defense. But additional proteins acting as T-cell accelerators are also required to trigger a full-blown immune response (see Figure). Many scientists contributed to this important basic research and identified other proteins that function as brakes on the T cells, inhibiting immune activation. This intricate balance between accelerators and brakes is essential for tight control. It ensures that the immune system is sufficiently engaged in attack against foreign microorganisms while avoiding the excessive activation that can lead to autoimmune destruction of healthy cells and tissues.

A new principle for immune therapy

During the 1990s, in his laboratory at the University of California, Berkeley, James P. Allison studied the T-cell protein CTLA-4. He was one of several scientists who had made the observation that CTLA-4 functions as a brake on T cells. Other research teams exploited the mechanism as a target in the treatment of autoimmune disease. Allison, however, had an entirely different idea. He had already developed an antibody that could bind to CTLA-4 and block its function (see Figure). He now set out to investigate if CTLA-4 blockade could disengage the T-cell brake and unleash the immune system to attack cancer cells. Allison and co-workers performed a first experiment at the end of 1994, and in their excitement it was immediately repeated over the Christmas break. The results were spectacular. Mice with cancer had been cured by treatment with the antibodies that inhibit the brake and unlock antitumor T-cell activity. Despite little interest from the pharmaceutical industry, Allison continued his intense efforts to develop the strategy into a therapy for humans. Promising results soon emerged from several groups, and in 2010 an important clinical study showed striking effects in patients with advanced melanoma, a type of skin cancer. In several patients signs of remaining cancer disappeared. Such remarkable results had never been seen before in this patient group.
Figure: Upper left: Activation of T cells requires that the T-cell receptor binds to structures on other immune cells recognized as ”non-self”. A protein functioning as a T-cell accelerator is also required for T cell activation. CTLA- 4 functions as a brake on T cells that inhibits the function of the accelerator. Lower left: Antibodies (green) against CTLA-4 block the function of the brake leading to activation of T cells and attack on cancer cells.Upper right: PD-1 is another T-cell brake that inhibits T-cell activation. Lower right: Antibodies against PD-1 inhibit the function of the brake leading to activation of T cells and highly efficient attack on cancer cells. Illustrations: © The Nobel Committee for Physiology or Medicine. Illustrator: Mattias Karlén

Discovery of PD-1 and its importance for cancer therapy

In 1992, a few years before Allison’s discovery, Tasuku Honjo discovered PD-1, another protein expressed on the surface of T-cells. Determined to unravel its role, he meticulously explored its function in a series of elegant experiments performed over many years in his laboratory at Kyoto University. The results showed that PD-1, similar to CTLA-4, functions as a T-cell brake, but operates by a different mechanism (see Figure). In animal experiments, PD-1 blockade was also shown to be a promising strategy in the fight against cancer, as demonstrated by Honjo and other groups. This paved the way for utilizing PD-1 as a target in the treatment of patients. Clinical development ensued, and in 2012 a key study demonstrated clear efficacy in the treatment of patients with different types of cancer. Results were dramatic, leading to long-term remission and possible cure in several patients with metastatic cancer, a condition that had previously been considered essentially untreatable.

Immune checkpoint therapy for cancer today and in the future

After the initial studies showing the effects of CTLA-4 and PD-1 blockade, the clinical development has been dramatic. We now know that the treatment, often referred to as “immune checkpoint therapy”, has fundamentally changed the outcome for certain groups of patients with advanced cancer. Similar to other cancer therapies, adverse side effects are seen, which can be serious and even life threatening. They are caused by an overactive immune response leading to autoimmune reactions, but are usually manageable. Intense continuing research is focused on elucidating mechanisms of action, with the aim of improving therapies and reducing side effects. Of the two treatment strategies, checkpoint therapy against PD-1 has proven more effective and positive results are being observed in several types of cancer, including lung cancer, renal cancer, lymphoma and melanoma. New clinical studies indicate that combination therapy, targeting both CTLA-4 and PD-1, can be even more effective, as demonstrated in patients with melanoma. Thus, Allison and Honjo have inspired efforts to combine different strategies to release the brakes on the immune system with the aim of eliminating tumor cells even more efficiently. A large number of checkpoint therapy trials are currently underway against most types of cancer, and new checkpoint proteins are being tested as targets. For more than 100 years scientists attempted to engage the immune system in the fight against cancer. Until the seminal discoveries by the two laureates, progress into clinical development was modest. Checkpoint therapy has now revolutionized cancer treatment and has fundamentally changed the way we view how cancer can be managed.

Key publications

Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 11(11), 3887–3895. Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736. Kwon, E. D., Hurwitz, A. A., Foster, B. A., Madias, C., Feldhaus, A. L., Greenberg, N. M., Burg, M.B. & Allison, J.P. (1997). Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA, 94(15), 8099–8103. Nishimura, H., Nose, M., Hiai, H., Minato, N., & Honjo, T. (1999). Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 11, 141–151. Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Ling, V., Bowman, M.R., Carreno, B.M., Collins, M., Wood, C.R. & Honjo, T. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 192(7), 1027–1034. Hodi, F.S., Mihm, M.C., Soiffer, R.J., Haluska, F.G., Butler, M., Seiden, M.V., Davis, T., Henry-Spires, R., MacRae, S., Willman, A., Padera, R., Jaklitsch, M.T., Shankar, S., Chen, T.C., Korman, A., Allison, J.P. & Dranoff, G. (2003). Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA, 100(8), 4712-4717. Iwai, Y., Terawaki, S., & Honjo, T. (2005). PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol, 17(2), 133–144.
The Nobel Assembly, consisting of 50 professors at Karolinska Institutet, awards the Nobel Prize in Physiology or Medicine. Its Nobel Committee evaluates the nominations. Since 1901 the Nobel Prize has been awarded to scientists who have made the most important discoveries for the benefit of humankind. Reference : 1.The Nobel Prize in Physiology or Medicine 2018. NobelPrize.org. Nobel Media AB 2019. Fri. 27 Sep 2019. (https://www.nobelprize.org/prizes/medicine/2018/press-release)
2.Nature Maz(https://www.nature.com/articles/d41586-018-06751-0)
Nobel Prize® is the registered trademark of the Nobel Foundation

Nobel Prize 2018 Read More »

내 몸 면역력, 어디 있나요?

"환절기 갑작스런 기온변화로
감기에 걸렸을 때"

"미세먼지 환경오염에 의해
호흡기 질환에 걸렸을 때!"

"몸에 다양한 이상신호들이 왔을 때"

"다들 말합니다.
면역력이 떨어져서 그렇다고... "

"면역력 저하는 만병의 원인입니다."

"그렇다면 면역력이란 무엇일까요?"

"면역력은 내 몸안의 방어시스템으로
우리 몸을 공격하는 병원체, 세균, 바이러스, 미세먼지, 그리고
우리 몸에서 매일같이 만들어지는 수 많은 암세포를 방어하고, 공격하여 없애는
군대와 같습니다."

"그렇다면 내 몸 안에 면역력은
어디에 있을까요?"

"내 몸안에 면역군대 '백혈구'
그리고 국군장병 역할을 하는 '면역세포들'
이들이 강해져야 내 몸도 튼튼해집니다."

"그렇다면 이 세포들이 튼튼하려면
어떻게 해야할까요?"

하버드의대에서 알려주는
면역력 높이는 7가지

뻔~하지만 중요한 방법들..
일상생활 속에서 가능하지만 이보다 더 어려운 것은 없습니다.

한번에 면역력을 증진시킬 수 있다면
얼마나 좋을까요?

내 몸 면역력, 어디 있나요? Read More »

Scroll to Top